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High-precision determination of the critical exponent y for self-avoiding walks
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We consider three-dimensional self-avoiding walks. We compute the expopdhtat controls the
asymptotic behavior of the number of walks going from the origin to any lattice poiht steps. We get
v=1.1575+0.0006 in agreement with renormalization-group predictions. Earlier Monte Carlo and exact-
enumeration determinations are now seen to be biased by corrections to §&lidg3-651X98)50202-4

PACS numbsd(s): 05.40:+j, 05.50+4q, 05.70.Jk

The self-avoiding walk(SAW) is a well-known lattice One may ask if the same phenomenon occurs for the other
model of a polymer molecule in a good solvent; moreover critical exponents. We consider here the expongmnhich,
because of its simplicity, it is an important test case in thegn spin systems, controls the critical behavior of the magnetic
theory of critical phenomena. susceptibility. For SAW’sy is defined in terms oty, the

Much work has been done in computing critical expo-number of walks going from the origin to any lattice point
nents by a variety of theoretical approaches—Monte Carlavith N steps: for largeN we have
(MC), exact enumeration/extrapolatidgE), and renormal- N y—1
ization group(RG)—with the aim of comparing these deter- Cn~aou N7, @

minations with one another and with the experimental reéyyherey is universal, whilew, the connectivity constant, and
sults. Small but persistent discrepancies have emerge&IO are nonuniversal.

among the predictions from different theoretical approaches.” o the exponeny, there are significant discrepancies in

For example, extensive studies have been done on the expgye existing theoretical predictions. MC and EE studies pro-
nent », which controls the critical behavior of the length \ije the estimates

scales. Early MC simulations and EE studiéin the sev-

enties predicted’=3/5 in agreement with the Flory theory. 1.161-0.001 EE, Ref.[5]

When the length of the walks that were simulated was in- y={ 1.1618-0.0001 EE, Ref[17] @)
creased2—4] the value ofr decreased te=0.592+0.002.

This value was also supported by extended EE studies, 1.1608-0.0003 MC, Ref.[16].

which provided an identical estimaft]. On the other hand,
field-theoretic RG computationg6—10 persistently gave
v=0.588t0.001 or even slightly lower. The discrepancy
was cIanﬁedlwhen the MC studies were extended to MUC- hsion to reproduce the exact value in two dimensions
longer walks: because of strong corrections with nonanalyti 43 i .

35. One can also use the scaling relatips (2— 7) v

exponentA~0.5, the asymptotic regime is reached only for ¥~ 3 : _ A 4
very long chains, and the results from shorter chains ar@nd the estimates foy and: the unconstrained expansion

systematically biased upwarfd1-14. A simulation [14] ~ gives »=0.5885-0.0025 and »=0.031+0.003 so that
with walks of length up tdN==80 000, using a data analysis = 1.158-0.005; using the exactly known values b2,
taking careful account of the corrections to scaling, gaver= 3 and 7=, one gets »=0.5880+0.0015 and
v=0.5877-0.0006 in good agreement with the 2=0.0320+0.0025 so thaty=1.1572+0.0035.
renormalization-group estimates. Universality is also well More controversial is the status of the expansions at fixed
satisfied: a simulatiofil3] in a slightly different geometry spatial dimensiond=3. In [7] ¥ is estimated as
providedv=0.5867=0.0013(68% confidence limjtwhile a  y=1.1615-0.0020 while in [9] the final estimate is
recent high-statistics simulatiofl5] for the off-lattice  y~1.1613. These estimates depend crucially on the critical
Kratky-Porod ~model with excluded volume gave \4jye of the renormalized coupling constarit: in [6,7] the
v=0.58800.0018. estimate g*=1.421+0.008 is used, while[9] uses

g* =1.422+0.008. However Nicke[18] has pointed out

On the other hand theexpansion predicts a lower val{g]:
1.15=<vy=<1.160. Indeed a Borel-type resummation gives
=1.160+0.004 andy=1.157+0.003 if one forces the ex-

*Electronic address: caraccio@sns.it that the present estimatesa could be slightly higher than
"Electronic address: causo@le.infn.it the correct value due to a possible nonanalyticity of the
*Electronic address: pelisset@ibmth.difi.unipi.it function atg*, which is usually neglected in the standard

1063-651X/98/5{2)/12154)/$15.00 57 R1215 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R1216 CARACCIOLO, CAUSO, AND PELISSETTO 57

analyses. A reanalysis of the serfd®] indicates thatg* on the dynamical critical behavior and on the implementa-

coud be as low as 1.39 and predicty=1.1569 tion of this algorithm can be found if19].
+0.10(g* — 1.39)= 0.0004 Let us now discuss how the critical exponeptcan be

In this paper we present a high-precision MC study fortheestimated from the Monte Carlo data produced by the join-

exponenty using walks up to lengthl=40 000. Our results and-cut algorithm. - .
confirm the important role played by corrections to scaling;I Le; u? shtar;[_ by noﬂ(cw;\g th?]t tg? rggdqm variablg, the
our final estimatey=1.1575+0.0006 is significantly lower ength of the first walk, has the distribution

than previous MC and EE results. It is also in agreement

with the predictions of thes expansion and with the RG ;(Nl):
results of Ref[10]. It is in disagreement, however, with the Z(Nyop)

estimates 0f6,8,9 unless one US?S a Ipwer valuea_f. for 1<N;<N;;—1, whereZ(N,y) is the obvious normaliza-
Indeed we have reanalyzed th¥g"’) series of{10] using i3 factor andcy is the number of walks going from the

the method presented [i6], but keepingg* arbitrary. We  origin to any lattice point withN steps, the asymptotic be-

ON; NNy

©)

get havior of which, for largeN, is given by Eq(1). The idea is
o then to make inferences aof from the observed statistics of
v=0.5882+0.07g* —1.421) +0.0005, 3 N,. Of course the problem is that Efl) is an asymptotic
formula valid only in the largeN regime. We will thus pro-
y= 1.1616+0.1](?‘ —1.421)+0.0004. (4) ceed in the following way: we will suppose that EQ) is

valid for all N=N,,, for many increasing values &f,;, and

These estimates are in reasonable agreement with the Morg@mespondingly we will get estimate(No;,Nmin); these
Carlo results fory and v if ?~1.395ﬂ: 0.01. Our data thus quantities are effective exponents that depend\ap, and

support a lower value for the renormalized coupling con-ihat give correct estimates 9fasNpin andN, 9o to infin-

. ; ; ity.
stant. The question that remains open is why standard anal;)—y The determination of from the data is obtained using the
ses overestimatg™: it could be that the conjectured nonana- 1,4 vimum-likelihood method. We will present here only the

lyticities are indeed present and play a larger role thanegits: for a detailed discussion we refer the readéi@h
expected, or, more simply, it could be a short—sgrles effect.' Given N,;, consider the functiorfrom now on we sup-
Of course one cannot hope to answer these questions NUMefass the dependence bly,)

cally: only an analytic treatment could solve the controversy.
In the presence of strong corrections to scaling, in order to 1 if Npin=N;=<Np

get a reliable estimate of the critical exponents one needs to aNmin(Nl):

perform the simulation in the largd-regime. This is only

possible if the algorithm at hand does not exhibit too strongypg |etX be the random variable

a critical slowing down. For the study affor SAW'’s on the

lattice the best available algorithm is tj@@n-and-cutalgo- X=IN[N{(N— Ny ] )

rithm [19]: in two dimensions the autocorrelation time, ex-

pressed in CPU units, behaves approximatel}as®while ~ Then define

in three dimensions the behavior is expected toNde2

The algorithm is thus nearly optimal. Another advantage of XN, ) = <X0Nmin>

this algorithm is that it does not require the determination of me Oy Y

the connectivity constant, at variance with more standard al-

gorithms. where the average) is taken in the ensemblB, _ sampled

The join-and-cut algorithm works in the unorthodox en-py the join-and-cut algorithm. The quantity defined in E8).
sembleTy,  consisting of all pairs of SAW'Seach walk g’ estimated in the usual way from the Monte Carlo data

starts at the orig_in and ends anyw@ewch_ that thetotal obtaining is this waySe2{Nniy)- Then}(Nmin) is computed
number of steps in the two walks is some fixed nunigy.

by solving the equation
Each pair in the ensemble is given equal weight; therefore,y g a

the two walks are not interacting except for the constraint on XE Niin) = [ XT3 Nipin) (9)
the sum of their lengths. '

One sweep of the algorithm consists of two step&)  where, for every function oN,, we define
Starting from a pair of walksd,,w,), we update each of

(6)

0 otherwise

®

min’

them independently using some ergodic fixed-length algo- Emt°;7NNTi”f(Nl)NI’l(Ntot—N1)7*1
rithm. We use the pivot algorithri20,21,3, which is the [f(N1)Ith,,(Nmin)= : NtTTNmin o —
best available one for the ensemble of fixed-length walks ENf:Nmin N “(Nior—=N1)”

with free endpoints. (2) We perform a join-and-cut move: (10

we concatenate the two walks andw, forming a new(not R
necessarily self-avoidingvalk w.gc; then we cutw.,,cata  The variance ofy(Np,) is then given by
random position creating two new walks'; and w’,. If

, , i | VarXGet Nun)
o' andw’, are self-avoiding we keep them; otherwise the var Ny ]= anAmc {Nmin
move is rejected and we stay witty and w,. More details Yl min (X XTtn 5 (Nin))?

(11)
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TABLE I. Number of iterations and autocorrelation times for into account that the CPU time per iteration increases as

the various values ;. ~N~%% we find that the CPU-time per independent walk
increases roughly as~12
Niot Niter Tint,¥(2) Tint,¥(1000 In Table Il and Table Il we report, for various,, the
200  5x10° 1.479 70:0.000 55 estimates oX{;C{Ni,) that are needed for our analysis.
2000 6.%410° 2.808+0.022 Let us now discuss the results. To determjnee tried to
20000 168 6.96+0.18 9.35+0.21 be very conservative, in order to avoid underestimating the
40000 8510  8.80+0.23 10.78-0.24 systematic errors. We have chosen the simplest possible

strategy: we simply increadd,,; and N, (this second pa-
rameter will play little role for larger values ®f,,;) until the
where [X;X]=[X2]-[X]2. We must finally compute €stimates ofy become independent of these two parameters.
var(XSei{Nmin)- As this quantity is defined as the ratio of Let us C(_)n3|der flrsNtm=200. We see here that the_ esti-
two mean value§see formula(8)] one must take into ac- Mates ofy increase withNp, and for Nip=50 they give
count the correlation between denominator and numeratof/~1.1605. This value is in agreement with Monte Carlo
Here we have used the standard formula for the variance of $fudies|16] performed in the same range of valueshbénd

ratio (valid in the large-sample limit exact-enumeration studi¢§,17]. Consider nowN,=2000.
One can see that the estimatesyofire lower and indicate
A\ (A)? A B 1.1580s y=<1.1585; clearly the estimate &t,,,=200 was
Va’(g = @z Val’(@ - @) . (12 biased upward by the corrections to scaling. Let us now con-

sider the results of Table Ill, where we give the estimates of
£ coming from the weighted average of the results with

Finally, let us mention how to combine data from runs a Ny =20 000 andN,,,=40 000. The estimates are extremely

different values ofN,,;. The approach we use consists in flat and agree within error bars froNy =1 to N,y =8000:

analyzing the data separately for eddj3; and then in con- o ! : :
structing the usual weighted average of the resulting estit—hey indicate 1.157/% y=1.1578. Again the new estimate is

~ i _ ) , lower than the previous ones. At leastN\yg;=2000 there are
matesy(Nmin) with weights inversely proportional to the es- || systematic deviations that are larger than the statistical
timated variances.

, . error. Of course the same could be true for our results at the
Let us now d|scus_s our results. We have performed highryger value ofN,,. The most conservative way to solve the
statistics runs atN;,;=200, 2000, 20000 and 40000. The question would be to have data at a higher valublgf, say

Qgr?oeorkoiger;i[:qotﬂz Ic?nr(;aogﬁ)%;ns:-aigﬁ go-ghﬁﬂg(gaé /2'&UI$Ntot=4x 10°, with comparable statistics. However, this is not

h bl 0. f giff | 1possible with current computer resources. We have thus sim-
the same table we report also, for two different values ok, riaq to estimate the systematic bias by comparing the
Nmin, the autocorrelation times for the observable

results with differenfN,,; assuming that the systematic error
vanishes adN,;"* with A=1/2 [this is the behavior one ex-
min (13) pects if the corrections toy, formula (1), vanish asN~2].

(Xon,,) (On,,) Specifically we assume that the effective expong(ity,)
behaves as

X0y O

min

Y(N min) =

which according tq12) controls the errors on. We use here

a standard autocorrelation analy§i8], Appendix Q with a .

self-consistent window of 15, y, supplemented by aad ¥(Nio) = A+B/Ng,. (14
hoc prescription to take into account the fact that for

t> 157, y the autocorrelation functions still have a long tail, .

which gives a sizeable contribution tg, y ([14], Appendix We neglect her.e the dependenceMy,, which is small for
C). The contribution of the tail ta;, v amounts to approxi- N,:=2000 and irrelevant for larger valuesgf,;. In order to
mately 20% for the two larger values df, 2% for 96t an upper bound onB we assume A=1/2,
N,=2000, while forN,,;=200 the autocorrelation function Y(2000)=1.1585 andy(40 000)=1.1574; that is we use for
is already in the noise for> 157, v. The results are con- N;,=2000 the higher value o compatible with our data,
sistent with the expectation o:fim,Y~N“°'3 so that, taking and for N;;;=40000 the lower value: this guarantees the

TABLE |l. Raw data and estimates offor N;;;=200 andN,,;=2000.

Niot=200 Nio=2000
Nmin X(li/?(rils Y Nmin Xg/legs Y

1 8.7011680.000052 1.152880.000 11 1 13.298 266-0.000068 1.157820.000 13
10 8.8420840.000036 1.158080.00021 100 13.4525%10.000046 1.158020.000 28
20 8.9430020.000026 1.158 660.00034 200  13.5519310.000033  1.1581%0.000 45
30 9.0174340.000019 1.158 750.00053 300 13.6254780.000025 1.158380.000 71
40 9.0746750.000 014 1.159990.00084 400 13.6820810.000018  1.1598+0.0011
50 9.1190830.000010 1.1605*+0.0014 500 13.7259790.000 013  1.1584+0.0019
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TABLE Ill. Raw data forN,,;=20 000 and\,,;=40 000 and combined estimate pfor various values of

Nmin-
Nimin XS1720 000) XS740 000) y
1 17.90 54+ 0.000 26 19.288 50+0.000 10 1.157 630.000 18
200 17.943 30+ 0.000 23 19.310 21%0.000 095 1.157 620.000 21
400 17.977 15+ 0.000 21 19.329 4(060.000 090 1.157 580.000 24
600 18.006 87+ 0.000 20 19.346 9980.000 086 1.157 650.000 26
800 18.033 76+ 0.000 19 19.363 2920.000 083 1.157 660.000 28
1000 18.058 30+ 0.000 17 19.378 6240.000 080 1.157 6#£0.000 30
1200 18.080 95+ 0.000 16 19.393 0770.000 077 1.157 5#£0.000 32
1400 18.101 98+ 0.000 15 19.406 8240.000 074 1.157 490.000 34
1600 18.121 72+ 0.000 14 19.419 9180.000 071 1.157 4#0.000 36
1800 18.140 22+ 0.000 13 19.432 47%0.000 069 1.157 550.000 38
2000 18.157 60+ 0.000 12 19.444 4880.000 067 1.157 490.000 40
2200 18.173 94+ 0.000 12 19.456 04%0.000 065 1.157 460.000 42
2400 18.189 3G+ 0.000 11 19.467 1690.000 063 1.157 390.000 45
2600 18.203 88+ 0.000 11 19.477 9G10.000 061 1.157 4%0.000 47
2800 18.217 71 0.000 10 19.488 2550.000 059 1.157 390.000 50
3000 18.230 811 0.000 093 19.498 2750.000 058 1.157 480.000 52
3500 18.260 909 0.000 081 19.521 8980.000 053 1.157 580.000 58
4000 18.287 471 0.000 069 19.543 7680.000 049 1.157 720.000 66
5000 18.331 323+ 0.000 049 19.582 9860.000 043 1.157 490.000 83
6000 18.364 968+ 0.000 034 19.617 1880.000 037 1.1566+0.0010
7000 18.389 933 0.000 021 19.647 2980.000 032 1.1586=+0.0013
8000 18.407 212+ 0.000 011 19.673 7540.000 027 1.1582+0.0017

most conservative estimate of the correction-to-scaling To conclude, let us mention that we expect problems
terms. Plugging the numbers in our ansatz weRBet0.06,  similar to those we find fory also in the estimates of the
so thatB/+/40 000=0.0003. We have taken as our final esti- connectivity constani defined in, Eq(1). Indeedy and u
mate the value aN,;,=2000: are usually determined together and thus they are both af-
fected by strong corrections to scaling. Therefore, alsqufor
we expect a large systematic bias; clearly lakjeyrand-
canonical simulations would be welcome.

y=1.1575+0.0003* 0.0003, (15)

where the first error is the statistical oK@8% confidence
limits) while the second is a subjective estimate of the error We thank Alan Sokal and Ettore Vicari for useful discus-
due to the corrections to scaling. sions.
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