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High-precision determination of the critical exponent g for self-avoiding walks

Sergio Caracciolo*
Scuola Normale Superiore and INFN, Sezione di Pisa, I-56100 Pisa, Italy

Maria Serena Causo†

Dipartimento di Fisica and INFN, Sezione di Lecce, Universita` degli Studi di Lecce, I-73100 Lecce, Italy

Andrea Pelissetto‡

Dipartimento di Fisica and INFN, Sezione di Pisa, Universita` degli Studi di Pisa, I-56100 Pisa, Italy
~Received 7 April 1997; revised manuscript received 8 July 1997!

We consider three-dimensional self-avoiding walks. We compute the exponentg that controls the
asymptotic behavior of the number of walks going from the origin to any lattice point inN steps. We get
g51.157560.0006 in agreement with renormalization-group predictions. Earlier Monte Carlo and exact-
enumeration determinations are now seen to be biased by corrections to scaling.@S1063-651X~98!50202-4#

PACS number~s!: 05.40.1j, 05.50.1q, 05.70.Jk
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The self-avoiding walk~SAW! is a well-known lattice
model of a polymer molecule in a good solvent; moreov
because of its simplicity, it is an important test case in
theory of critical phenomena.

Much work has been done in computing critical exp
nents by a variety of theoretical approaches—Monte Ca
~MC!, exact enumeration/extrapolation~EE!, and renormal-
ization group~RG!—with the aim of comparing these dete
minations with one another and with the experimental
sults. Small but persistent discrepancies have eme
among the predictions from different theoretical approach
For example, extensive studies have been done on the e
nent n, which controls the critical behavior of the leng
scales. Early MC simulations and EE studies@1# in the sev-
enties predictedn53/5 in agreement with the Flory theory
When the length of the walks that were simulated was
creased@2–4# the value ofn decreased ton50.59260.002.
This value was also supported by extended EE stud
which provided an identical estimate@5#. On the other hand
field-theoretic RG computations@6–10# persistently gave
n50.58860.001 or even slightly lower. The discrepan
was clarified when the MC studies were extended to m
longer walks: because of strong corrections with nonanal
exponentD'0.5, the asymptotic regime is reached only f
very long chains, and the results from shorter chains
systematically biased upward@11–14#. A simulation @14#
with walks of length up toN580 000, using a data analys
taking careful account of the corrections to scaling, ga
n50.587760.0006 in good agreement with th
renormalization-group estimates. Universality is also w
satisfied: a simulation@13# in a slightly different geometry
providedn50.586760.0013~68% confidence limit! while a
recent high-statistics simulation@15# for the off-lattice
Kratky-Porod model with excluded volume gav
n50.588060.0018.
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One may ask if the same phenomenon occurs for the o
critical exponents. We consider here the exponentg, which,
in spin systems, controls the critical behavior of the magne
susceptibility. For SAW’sg is defined in terms ofcN , the
number of walks going from the origin to any lattice poi
with N steps: for largeN we have

cN'a0mNNg21, ~1!

whereg is universal, whilem, the connectivity constant, an
a0 are nonuniversal.

For the exponentg, there are significant discrepancies
the existing theoretical predictions. MC and EE studies p
vide the estimates

g5H 1.16160.001 EE, Ref.@5#

1.161960.0001 EE, Ref.@17#

1.160860.0003 MC, Ref.@16#.

~2!

On the other hand thee expansion predicts a lower value@7#:
1.157&g&1.160. Indeed a Borel-type resummation giv
g51.16060.004 andg51.15760.003 if one forces the ex
pansion to reproduce the exact value in two dimensi

g5 43
32 . One can also use the scaling relationg5(22h)n

and the estimates forh andn: the unconstrainede expansion
gives n50.588560.0025 and h50.03160.003 so that
g51.15960.005; using the exactly known values ford52,

n5 3
4 and h5 5

24 , one gets n50.588060.0015 and
h50.032060.0025 so thatg51.157260.0035.

More controversial is the status of the expansions at fi
spatial dimension d53. In @7# g is estimated as
g51.161560.0020 while in @9# the final estimate is
g'1.1613. These estimates depend crucially on the crit
value of the renormalized coupling constantḡ* : in @6,7# the
estimate ḡ* 51.42160.008 is used, while @9# uses
ḡ* 51.42260.008. However Nickel@18# has pointed out
that the present estimates ofḡ* could be slightly higher than
the correct value due to a possible nonanalyticity of theb

function at ḡ* , which is usually neglected in the standa
R1215 © 1998 The American Physical Society
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analyses. A reanalysis of the series@10# indicates thatḡ*
could be as low as 1.39 and predictsg51.1569
10.10(ḡ* 21.39)60.0004.

In this paper we present a high-precision MC study for
exponentg using walks up to lengthN540 000. Our results
confirm the important role played by corrections to scalin
our final estimateg51.157560.0006 is significantly lower
than previous MC and EE results. It is also in agreem
with the predictions of thee expansion and with the RG
results of Ref.@10#. It is in disagreement, however, with th
estimates of@6,8,9# unless one uses a lower value ofḡ* .
Indeed we have reanalyzed theO(g7) series of@10# using
the method presented in@6#, but keepingḡ* arbitrary. We
get

n50.588210.07~ ḡ* 21.421!60.0005, ~3!

g51.161610.11~ ḡ* 21.421!60.0004. ~4!

These estimates are in reasonable agreement with the M
Carlo results forg andn if ḡ* '1.39560.01. Our data thus
support a lower value for the renormalized coupling co
stant. The question that remains open is why standard an
ses overestimateḡ* : it could be that the conjectured nonan
lyticities are indeed present and play a larger role th
expected, or, more simply, it could be a short-series eff
Of course one cannot hope to answer these questions nu
cally: only an analytic treatment could solve the controver

In the presence of strong corrections to scaling, in orde
get a reliable estimate of the critical exponents one need
perform the simulation in the large-N regime. This is only
possible if the algorithm at hand does not exhibit too stro
a critical slowing down. For the study ofg for SAW’s on the
lattice the best available algorithm is thejoin-and-cutalgo-
rithm @19#: in two dimensions the autocorrelation time, e
pressed in CPU units, behaves approximately asN'1.5 while
in three dimensions the behavior is expected to beN'1.2.
The algorithm is thus nearly optimal. Another advantage
this algorithm is that it does not require the determination
the connectivity constant, at variance with more standard
gorithms.

The join-and-cut algorithm works in the unorthodox e
sembleTNtot

consisting of all pairs of SAW’s~each walk
starts at the origin and ends anywhere! such that thetotal
number of steps in the two walks is some fixed numberNtot .
Each pair in the ensemble is given equal weight; therefo
the two walks are not interacting except for the constraint
the sum of their lengths.

One sweep of the algorithm consists of two steps:~1!
Starting from a pair of walks (v1 ,v2), we update each o
them independently using some ergodic fixed-length al
rithm. We use the pivot algorithm@20,21,3#, which is the
best available one for the ensemble of fixed-length wa
with free endpoints. ~2! We perform a join-and-cut move
we concatenate the two walksv1 andv2 forming a new~not
necessarily self-avoiding! walk vconc; then we cutvconc at a
random position creating two new walksv81 and v82 . If
v81 andv82 are self-avoiding we keep them; otherwise t
move is rejected and we stay withv1 andv2 . More details
e
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on the dynamical critical behavior and on the implemen
tion of this algorithm can be found in@19#.

Let us now discuss how the critical exponentg can be
estimated from the Monte Carlo data produced by the jo
and-cut algorithm.

Let us start by noticing that the random variableN1 , the
length of the first walk, has the distribution

p̄~N1!5
cN1

cNtot2N1

Z~Ntot!
~5!

for 1<N1<Ntot21, whereZ(Ntot) is the obvious normaliza-
tion factor andcN is the number of walks going from th
origin to any lattice point withN steps, the asymptotic be
havior of which, for largeN, is given by Eq.~1!. The idea is
then to make inferences ofg from the observed statistics o
N1 . Of course the problem is that Eq.~1! is an asymptotic
formula valid only in the large-N regime. We will thus pro-
ceed in the following way: we will suppose that Eq.~1! is
valid for all N>Nmin for many increasing values ofNmin and
correspondingly we will get estimatesĝ(Ntot ,Nmin); these
quantities are effective exponents that depend onNmin and
that give correct estimates ofg asNmin andNtot go to infin-
ity.

The determination ofg from the data is obtained using th
maximum-likelihood method. We will present here only th
results: for a detailed discussion we refer the reader to@19#.

Given Nmin consider the function~from now on we sup-
press the dependence onNtot!

uNmin
~N1!5H 1 if Nmin<N1<Ntot,

0 otherwise
~6!

and letX be the random variable

X5 ln@N1~Ntot2N1!#. ~7!

Then define

Xcens~Nmin!5
^XuNmin

&

^uNmin
&

, ~8!

where the averagê•& is taken in the ensembleTNtot
sampled

by the join-and-cut algorithm. The quantity defined in Eq.~8!
is estimated in the usual way from the Monte Carlo d
obtaining is this wayXMC

cens(Nmin). Thenĝ(Nmin) is computed
by solving the equation

XMC
cens~Nmin!5@X# th,ĝ~Nmin!, ~9!

where, for every function ofN1 , we define

@ f ~N1!# th,g~Nmin![
(N15Nmin

Ntot2Nminf ~N1!N1
g21~Ntot2N1!g21

(N15Nmin

Ntot2NminN1
g21~Ntot2N1!g21 .

~10!

The variance ofĝ(Nmin) is then given by

var@ ĝ~Nmin!#5
var„XMC

cens~Nmin!…

„@X;X# th,ĝ~Nmin!…
2 ~11!
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where @X;X#5@X2#2@X#2. We must finally compute
var„XMC

cens(Nmin)…. As this quantity is defined as the ratio o
two mean values@see formula~8!# one must take into ac
count the correlation between denominator and numera
Here we have used the standard formula for the variance
ratio ~valid in the large-sample limit!

varS A

BD5
^A&2

^B&2 varS A

^A&
2

B

^B& D . ~12!

Finally, let us mention how to combine data from runs
different values ofNtot . The approach we use consists
analyzing the data separately for eachNtot and then in con-
structing the usual weighted average of the resulting e
matesĝ(Nmin) with weights inversely proportional to the e
timated variances.

Let us now discuss our results. We have performed hi
statistics runs atNtot5200, 2000, 20 000 and 40 000. Th
number of iterations is reported in Table I. The total simu
tion took 16 months on an AlphaStation 600 Mod 5/266.
the same table we report also, for two different values
Nmin , the autocorrelation times for the observable

Y~Nmin!5
XuNmin

^XuNmin
&

2
uNmin

^uNmin
&

~13!

which according to~12! controls the errors ong. We use here
a standard autocorrelation analysis~@3#, Appendix C! with a
self-consistent window of 15t int,Y , supplemented by anad
hoc prescription to take into account the fact that f
t.15t int,Y the autocorrelation functions still have a long ta
which gives a sizeable contribution tot int,Y ~@14#, Appendix
C!. The contribution of the tail tot int,Y amounts to approxi-
mately 20% for the two larger values ofNtot , 2% for
Ntot52000, while forNtot5200 the autocorrelation functio
is already in the noise fort.15t int,Y . The results are con
sistent with the expectation oft int,Y;N'0.3 so that, taking

TABLE I. Number of iterations and autocorrelation times f
the various values ofNtot .

Ntot Niter t int,Y(1) t int,Y(1000)

200 53108 1.479 7060.000 55
2000 6.23108 2.80860.022

20 000 108 6.9660.18 9.3560.21
40 000 8.53108 8.8060.23 10.7860.24
r.
f a

t

ti-

-

-

f

into account that the CPU time per iteration increases
;N'0.9, we find that the CPU-time per independent wa
increases roughly asN'1.2.

In Table II and Table III we report, for variousNmin , the
estimates ofXMC

cens(Nmin) that are needed for our analysis.
Let us now discuss the results. To determineg we tried to

be very conservative, in order to avoid underestimating
systematic errors. We have chosen the simplest poss
strategy: we simply increaseNtot and Nmin ~this second pa-
rameter will play little role for larger values ofNtot! until the
estimates ofg become independent of these two paramete

Let us consider firstNtot5200. We see here that the es
mates ofg increase withNmin and for Nmin550 they give
g'1.1605. This value is in agreement with Monte Ca
studies@16# performed in the same range of values ofN and
exact-enumeration studies@5,17#. Consider nowNtot52000.
One can see that the estimates ofg are lower and indicate
1.1580&g&1.1585; clearly the estimate atNtot5200 was
biased upward by the corrections to scaling. Let us now c
sider the results of Table III, where we give the estimates
g coming from the weighted average of the results w
Ntot520 000 andNtot540 000. The estimates are extreme
flat and agree within error bars fromNmin51 to Nmin58000;
they indicate 1.1574&g&1.1578. Again the new estimate
lower than the previous ones. At least atNtot52000 there are
still systematic deviations that are larger than the statist
error. Of course the same could be true for our results at
larger value ofNtot . The most conservative way to solve th
question would be to have data at a higher value ofNtot , say
Ntot543105, with comparable statistics. However, this is n
possible with current computer resources. We have thus s
ply tried to estimate the systematic bias by comparing
results with differentNtot assuming that the systematic err
vanishes asNtot

2D with D*1/2 @this is the behavior one ex
pects if the corrections tocN , formula ~1!, vanish asN2D#.
Specifically we assume that the effective exponentĝ(Ntot)
behaves as

ĝ~Ntot!5A1B/Ntot
D . ~14!

We neglect here the dependence onNmin, which is small for
Ntot52000 and irrelevant for larger values ofNtot . In order to
get an upper bound onB we assume D51/2,
ĝ(2000)51.1585 andĝ(40 000)51.1574; that is we use fo
Ntot52000 the higher value ofĝ compatible with our data,
and for Ntot540 000 the lower value: this guarantees t
TABLE II. Raw data and estimates ofg for Ntot5200 andNtot52000.

Ntot5200 Ntot52000
Nmin XMC

cens g Nmin XMC
cens g

1 8.701 16860.000 052 1.152 8860.000 11 1 13.298 26660.000 068 1.1578260.000 13
10 8.842 08460.000 036 1.158 0860.000 21 100 13.452 57160.000 046 1.1580260.000 28
20 8.943 00260.000 026 1.158 6660.000 34 200 13.551 93160.000 033 1.1581160.000 45
30 9.017 43460.000 019 1.158 7560.000 53 300 13.625 47860.000 025 1.1583860.000 71
40 9.074 67560.000 014 1.159 9960.000 84 400 13.682 08160.000 018 1.159860.0011
50 9.119 08360.000 010 1.160560.0014 500 13.725 97060.000 013 1.158460.0019
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TABLE III. Raw data forNtot520 000 andNtot540 000 and combined estimate ofg for various values of
Nmin .

Nmin XMC
cens(20 000) XMC

cens(40 000) g

1 17.90 546 0.000 26 19.288 5060.000 10 1.157 6360.000 18
200 17.943 306 0.000 23 19.310 21160.000 095 1.157 6260.000 21
400 17.977 156 0.000 21 19.329 40660.000 090 1.157 5860.000 24
600 18.006 876 0.000 20 19.346 99860.000 086 1.157 6560.000 26
800 18.033 766 0.000 19 19.363 29260.000 083 1.157 6060.000 28

1000 18.058 306 0.000 17 19.378 62460.000 080 1.157 6460.000 30
1200 18.080 956 0.000 16 19.393 07760.000 077 1.157 5460.000 32
1400 18.101 986 0.000 15 19.406 82460.000 074 1.157 4960.000 34
1600 18.121 726 0.000 14 19.419 91860.000 071 1.157 4460.000 36
1800 18.140 226 0.000 13 19.432 47760.000 069 1.157 5560.000 38
2000 18.157 606 0.000 12 19.444 48860.000 067 1.157 4960.000 40
2200 18.173 946 0.000 12 19.456 04160.000 065 1.157 4660.000 42
2400 18.189 306 0.000 11 19.467 16960.000 063 1.157 3960.000 45
2600 18.203 886 0.000 11 19.477 90160.000 061 1.157 4160.000 47
2800 18.217 716 0.000 10 19.488 25560.000 059 1.157 3960.000 50
3000 18.230 8116 0.000 093 19.498 27560.000 058 1.157 4860.000 52
3500 18.260 9096 0.000 081 19.521 89860.000 053 1.157 5360.000 58
4000 18.287 4716 0.000 069 19.543 76360.000 049 1.157 7260.000 66
5000 18.331 3236 0.000 049 19.582 98660.000 043 1.157 4960.000 83
6000 18.364 9686 0.000 034 19.617 18360.000 037 1.156660.0010
7000 18.389 9396 0.000 021 19.647 29860.000 032 1.158660.0013
8000 18.407 2126 0.000 011 19.673 75460.000 027 1.158260.0017
lin

ti-

ro

ms
e

af-
r

s-
most conservative estimate of the correction-to-sca
terms. Plugging the numbers in our ansatz we getB'0.06,
so thatB/A40 000'0.0003. We have taken as our final es
mate the value atNmin52000:

g51.157560.000360.0003, ~15!

where the first error is the statistical one~68% confidence
limits! while the second is a subjective estimate of the er
due to the corrections to scaling.
tt.
g

r

To conclude, let us mention that we expect proble
similar to those we find forg also in the estimates of th
connectivity constantm defined in, Eq.~1!. Indeedg andm
are usually determined together and thus they are both
fected by strong corrections to scaling. Therefore, also fom
we expect a large systematic bias; clearly large-N grand-
canonical simulations would be welcome.

We thank Alan Sokal and Ettore Vicari for useful discu
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